Delivering 100G per wavelength with <u>today's</u> DWDM infrastructure Motivation, Experiments and Standards

RIPE 55, Amsterdam

Michael Finkenzeller, IPT DWDM

Motivation and Some Background Information

100G transmission: Experiments and Trials

Standards: 100GbE, Carrier Ethernet Transport

Historical Volume Growth AMS-IX

Every 30 months traffic increased with factor 10.

WDM - Wavelength Division Multiplexing

- Each "coloured" wavelength represents one WDM channel
- Multiplexing of separate signals on same fiber

Signal Quality Degradation in Optical Systems

Motivation and Some Background Information

100G transmission: Experiments and Trials

Standards: 100GbE, Carrier Ethernet Transport

2006: 107 Gbit/s transmission over 160km

Field trial using ETDM sender and receiver.

Technology Trends in 40G/100G

Enabling technologies: Modulation formats (DPSK, DQPSK) Polarization-Multiplexing (PolMux) Coherent receivers

Modulation formats: multiple bits per symbol

2007: 10 x 111 Gbit/s transmission over 2375 km

Experimental setup:

- 10 channels with 111Gbit/s each (100GbE + EFEC) on a 50GHz grid
- Alternative modulation format **POLMUX-RZ-DQPSK**
- Completely electronic modulation and demodulation
- 2375km of SSMF and 5 add-drop nodes
- Coherent detection and equalization for polarization recovery and high chromatic dispersion tolerance

Possible to use today's 10G infrastructure for 100G/ λ transmission

As broad as

 $10G \rightarrow same$

infrastructure

usable!

COHERENT 111-Gbit/s POLMUX-DQPSK (CP-QPSK)

- Very narrow spectral width => Use of existing 50Ghz grid WDM systems
- High spectral efficiency 4 bits per symbol (27,75Gbaud)
- ✓ Use of low spec 40-G electrical components
- Chromatic dispersion and PMD are compensated electrically (1st time for 100Gb/s)
- Coherent detection allows electrical polarization de-multiplexing

111-Gbit/s POLMUX-(N)RZ-DQPSK transmitter: **Polarization multiplexing**

Intensitv

Phase 0 $\pi/2 \pi$ 0 $3\pi/2\pi/2$ Phase $\pi/2$ 0 $3\pi/2 \pi$ π $3\pi/2$

POLMUX-(N)RZ-DQPSK receiver:

Coherent detection

Native transport versus concatenated within DWDM layer

Native 40/100G (serial)

- ③ optimal use of network capacity
- easy service routing
- easy to implement services in meshed network
- 8 high reach might be available later
- 8 potentially more regeneration points

Concatenated nx10G (parallel)

- © less optical impairments
- © more easy to obtain higher reach
- 8 routing as bundle of wavelengths necessary
- Congests network (especially cumbersome in partially filled meshed network)
- 8 latency cannot be avoided
- 8 doesn't scale in OpEx/CapEx

Native transport is the better choice. Better scalability and simple maintenance: "One service, one port"

Motivation and Some Background Information

100G transmission: Experiments and Trials

Standards: 100GbE, Carrier Ethernet Transport

100GbE: IEEE and ITU-T are different worlds.

The IEEE world is short range and used factor 10 in the past. The ITU-T world is long range and used factor 4 in the past.

Status 100GbE Standardization

- Status IEEE 802.3 Higher-Speed Study Group (HSSG)
 - Attendance predominantly interested in cost-efficient, mature transceiver alternatives for short-reach applications, transport networking vendors / service providers represent a minority. New: data center and server operators.
 - Description of standard is scheduled for 2008, finalization for 2009/2010.
 - Data rate and de-skewing procedure are defined in study groups today.
- Status ITU SG15 Q6 / Q11:
 - Several OTU-4 proposals in G.709 are under discussion (111 112 Gb/s or 130Gb/s), new revision of G.709 including 100GbE transport capability planned for Feb 2008.

Line Data Rate	Client Interface	Line Interface
111-112Gb/s	100GbE (9-10 x 10Gb)	1λ, 2λ
130Gb/s	100GbE 3 x 40Gb/s (912 x10Gb/s)	(1λ), 2λ, 3λ

Data rate 130G would delay 100GbE products availability for 2 years. Close coordination is needed for 100G and 40G.

Mapping of 10GbE: Example where standard didn't much help ...

For 10GbE two different line interfaces (over-clocking).

Pre-Standard 100G?

AT&T, Verizon Have Optical Wishes

JUNE 08, 2007

... In a keynote on Wednesday, AT&T's Peter Magill said his company would need 100 Gig sooner rather than later.

Magill says that AT&T is committed to meeting bandwidth demands, however, and in an interview after his keynote, he said that AT&T would deploy pre-standard 100-Gig technology if it had to, as long as it made economic sense.

source: Light Reading, October 03, 2007

Provide native End-to-End Ethernet Services New 100GbE traffic will require an optimized Carrier Ethernet Transport (CET)

Motivation and Some Background Information

100G transmission: Experiments and Trials

Standards: 100GbE, Carrier Ethernet Transport

- Demand for 100G is real.
 - IP based applications are main driver.
 - Main payload will be Ethernet based service

- 100G: Technology is on the right track.
 - Operation of 100G native on 10G infrastructure is feasible.
 - 100GbE standardization is key factor for products in 2010.
- Standardization Issues
 - Transport: client side and line side have to be synchronized
 - Carrier Ethernet Transport (CET) provides simplification and cost savings for future

Thank you ...

... Questions?

