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Introduction

* General Thoughts

- Share the goals of LISP
- No magic bullet

- Core requirements

- Incremental deployment
- Minimize pain/cost

- Independent of which mapping system
chosen (?)

LISP Transition Mechanisms Oct 2007 Slide 2



Three Transition Mechanisms

- #1 Routable EIDs

- Not much time spent on this

- Having everything in both mapping systems seems
non optimal

* #2 Proxy Tunnel Routers (PTRs)

- Can work nicely if we use a separate sub namespace
for the new 'PT EIDs'

+ #3 Source NAT
- Has all the classic problems of NAT
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Reference Transition Topology

Non LISP Site
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LISP Site: LISP-NR

(addressed from non-routable space)

LISP Site: LISP-R

(addressed from routable space)
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Routable EIDs

» EIDs published in both the existing BGP DFZ
and the LISP mapping database
- Essentially there are no sites that are LISP-NR’

* EIDs can only be withdrawn from a table
after transition is ‘completed'

» This mechanism may provide a good way to get
started and gather data
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Proxy Tunnel Routers (PTRs)

* PTRs Originate the new EID sub-namespace

- Sub-namespace: A chunk of PA locator space set
aside for EID transition

- Some advantages if this space aggregated
- Something like 240/4 for example ©
- <Insert your own address aggregate here>

* Packets from non LISP sites trying to reach
LISP-NR sites are routed to these PTRs

- The PTR has the mapping information of the
destination ETR

- The return path does NOT go back through the
PTR - the default is asymmetric
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Scaling PTRs

* PTRs sink traffic to them by announcing EID
namespace

- can announce the entire EID sub-namespace or
more specific pieces of the sub-namespace

- PTRs need to be robust and scale well
- Puts onus on a SP o manage/pay for transition

- Performance considerations
- Stretch
- State
- Asymmetry
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Packet Flow with PTRs

* A packet flow from non LISP site to LISP-NR
site:
- Host looks up EID for dest - gets 240.1.1.1
- CE default routes to its PE (240/4 not in table)
- PE has route to 240/4 next hop is the PTR
- PTR has mapping information and LISP encaps
- Return path is asymmetrical

* Packet Flow from non lisp site to lisp-r site
- Since destination is routable PTR not used
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Transition Topology: PTR

Non LISP Site

o Proxy TR (PTR)

‘0’ Not used in the case of
o LISP-NR site talking to
another LISP-NR site.

LISP Site: LISP-R

(addressed from routable space)

LISP Site: LISP-NR

(addressed from non-routable space)
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Further Thoughts on PTRs

* Need to figure out how forwarding
features like uRPF work in this model

- How best to control route
anhouncements

» Better understand security
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Source NAT

+ Source NAT hides the NR space from non-lisp
sites

* Each xTR can have the ability to NAT before
encap

» Should support both 1:1 NAT, and P-NAT

- 1:1 NAT will require more than one /32 of PA space
assigned to that site

- Multi-homing should still work

- Ingress will have to be statically mapped (just like
NAT today)
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Source NAT Steps

- Site has PA 128.200.1.0/24 assigned to it
- 128.200.1.1 will be used as the R-Loc site
- The rest of the /24 will be used for 1:1 NATs

» The PI EID space for the site is 240.1.1.0/24

- Just an example, can be any non-routed address
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Source NAT Steps (cont)

* The ITR then performs a NAT function on
the outgoing packet of say 240.1.1.2 to
128.200.1.2 when talking to a non-lisp site...

- Ingress connections must use 128.200.1.2 as the
public EID for this host (classic NAT ugliness)

- When 240.1.1.2 wants to talk to a LISP site,

the EID is maintained, and the source rloc of
128.200.1.1 is used

- Ingress connections to 128.200.1.1 are always LISP
packets
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Transition Topology: Source NAT

Non LISP Site

< >

NAT Pool LISP EID
PA Space Pl Space
128.200.1.0/24 240.1.1.0/24

e

LISP Site: LISP-NR

(addressed from non-routable space)

o

)

LISP Site: LISP-R

(addressed from routable space)

p

ASNXx
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Further Thoughts on NATs

* One big open question is how you deal
with inbound connections with two
possible EIDs

* Need to gather a lot more data on how
this would work in the real world

» Better understand security
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Some Open Questions

» Did we miss anything?
* Which is uglier - PTRs or Source-NAT
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References (incomplete)

» Background Information
- Route Scalability work (vaf, jason, et al)
- RAWS Report

- RRG List
- LISP
- CONS
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