LISP Transition Mechanisms

Oct 2007

Darrel Lewis, Dino Farinacci, David Meyer, Vince
Fuller, Scott Brim, Noel Chiappa

Introduction

* General Thoughts

- Share the goals of LISP
- No magic bullet

- Core requirements

- Incremental deployment
- Minimize pain/cost

- Independent of which mapping system
chosen (?)

LISP Transition Mechanisms Oct 2007 Slide 2

Three Transition Mechanisms

- #1 Routable EIDs

- Not much time spent on this

- Having everything in both mapping systems seems
non optimal

* #2 Proxy Tunnel Routers (PTRs)

- Can work nicely if we use a separate sub namespace
for the new 'PT EIDs'

+ #3 Source NAT
- Has all the classic problems of NAT

LISP Transition Mechanisms Oct 2007 Slide 3

Reference Transition Topology

Non LISP Site

o
CE) /\/PE\—\
PE

ASNXx)

PE \QC’E\/L/>

LISP Site: LISP-NR

(addressed from non-routable space)

LISP Site: LISP-R

(addressed from routable space)

LISP Transition Mechanisms Oct 2007 Slide 4

Routable EIDs

» EIDs published in both the existing BGP DFZ
and the LISP mapping database
- Essentially there are no sites that are LISP-NR’

* EIDs can only be withdrawn from a table
after transition is ‘completed'

» This mechanism may provide a good way to get
started and gather data

LISP Transition Mechanisms Oct 2007 Slide 5

Proxy Tunnel Routers (PTRs)

* PTRs Originate the new EID sub-namespace

- Sub-namespace: A chunk of PA locator space set
aside for EID transition

- Some advantages if this space aggregated
- Something like 240/4 for example ©
- <Insert your own address aggregate here>

* Packets from non LISP sites trying to reach
LISP-NR sites are routed to these PTRs

- The PTR has the mapping information of the
destination ETR

- The return path does NOT go back through the
PTR - the default is asymmetric

LISP Transition Mechanisms Oct 2007 Slide 6

Scaling PTRs

* PTRs sink traffic to them by announcing EID
namespace

- can announce the entire EID sub-namespace or
more specific pieces of the sub-namespace

- PTRs need to be robust and scale well
- Puts onus on a SP o manage/pay for transition

- Performance considerations
- Stretch
- State
- Asymmetry

LISP Transition Mechanisms Oct 2007 Slide 7

Packet Flow with PTRs

* A packet flow from non LISP site to LISP-NR
site:
- Host looks up EID for dest - gets 240.1.1.1
- CE default routes to its PE (240/4 not in table)
- PE has route to 240/4 next hop is the PTR
- PTR has mapping information and LISP encaps
- Return path is asymmetrical

* Packet Flow from non lisp site to lisp-r site
- Since destination is routable PTR not used

LISP Transition Mechanisms Oct 2007 Slide 8

Transition Topology: PTR

Non LISP Site

o Proxy TR (PTR)

‘0’ Not used in the case of
o LISP-NR site talking to
another LISP-NR site.

LISP Site: LISP-R

(addressed from routable space)

LISP Site: LISP-NR

(addressed from non-routable space)

LISP Transition Mechanisms Oct 2007 Slide 9

Further Thoughts on PTRs

* Need to figure out how forwarding
features like uRPF work in this model

- How best to control route
anhouncements

» Better understand security

LISP Transition Mechanisms Oct 2007 Slide 10

Source NAT

+ Source NAT hides the NR space from non-lisp
sites

* Each xTR can have the ability to NAT before
encap

» Should support both 1:1 NAT, and P-NAT

- 1:1 NAT will require more than one /32 of PA space
assigned to that site

- Multi-homing should still work

- Ingress will have to be statically mapped (just like
NAT today)

LISP Transition Mechanisms Oct 2007 Slide 11

Source NAT

+ Source NAT hides the NR space from non-lisp
sites

* Each xTR can have the ability to NAT before
encap

» Should support both 1:1 NAT, and P-NAT

- 1:1 NAT will require more than one /32 of PA space
assigned to that site

- Multi-homing should still work

- Ingress will have to be statically mapped (just like
NAT today)

LISP Transition Mechanisms Oct 2007 Slide 12

Source NAT Steps

- Site has PA 128.200.1.0/24 assigned to it
- 128.200.1.1 will be used as the R-Loc site
- The rest of the /24 will be used for 1:1 NATs

» The PI EID space for the site is 240.1.1.0/24

- Just an example, can be any non-routed address

LISP Transition Mechanisms Oct 2007 Slide 13

Source NAT Steps (cont)

* The ITR then performs a NAT function on
the outgoing packet of say 240.1.1.2 to
128.200.1.2 when talking to a non-lisp site...

- Ingress connections must use 128.200.1.2 as the
public EID for this host (classic NAT ugliness)

- When 240.1.1.2 wants to talk to a LISP site,

the EID is maintained, and the source rloc of
128.200.1.1 is used

- Ingress connections to 128.200.1.1 are always LISP
packets

LISP Transition Mechanisms Oct 2007 Slide 14

Transition Topology: Source NAT

Non LISP Site

< >

NAT Pool LISP EID
PA Space Pl Space
128.200.1.0/24 240.1.1.0/24

e

LISP Site: LISP-NR

(addressed from non-routable space)

o

)

LISP Site: LISP-R

(addressed from routable space)

p

ASNXx

LISP Transition Mechanisms Oct 2007 Slide 15

Further Thoughts on NATs

* One big open question is how you deal
with inbound connections with two
possible EIDs

* Need to gather a lot more data on how
this would work in the real world

» Better understand security

LISP Transition Mechanisms Oct 2007 Slide 16

Some Open Questions

» Did we miss anything?
* Which is uglier - PTRs or Source-NAT

LISP Transition Mechanisms Oct 2007 Slide 17

References (incomplete)

» Background Information
- Route Scalability work (vaf, jason, et al)
- RAWS Report

- RRG List
- LISP
- CONS

LISP Transition Mechanisms Oct 2007 Slide 18

Idefun changer—ane {failures dat&base} [defun chr-top [(aource deatlination plan path prev-plan]
_!_1‘:" halte: ﬁﬂﬂlﬂd_nl&n'ﬂll nf&ilurES] dﬂ.tabaSE‘]} [setf chosgn-path (chr-svaluate source deatinatlan

[ghr-retrieve fsource desting

rEalluze=pol {‘h‘é’t’f”’fl‘i‘éf*ﬂ'ﬁf“ 1PE'DCE'EI$"BT:E {CEI failures) ﬂﬂ'.ﬂh&ﬂ-ﬂlhi (ebr=new=-plan chosen-path plan))

Lappend. 1ige (list indexX Iinter=

> {!Eﬂtf:.ﬂﬁ:ﬁﬂdrpﬁld;miwl:rﬂCEE.s-tWG (cax Falluves) FIesf-pRrCl) . . oo oo
(t €]} (cond {(null {(cdr failures)) SEEﬂﬂd—PEIt} 1y we've reached the concluaian of CBA - return the path

lmfﬁ mam&: ﬁﬁr ":{Ear f.EIll'Ll]’.'EB] SE'C:ﬂnd_PE[rtﬁg }1 (ehr=exact=mateh (list ssurce degtinatisen) plan

) Lo el E?' paLay T {append paih (cbr-get-path (list source deatinat
- 1
:| dadar pathi}) [((chr-exact-match ([list scurce demtlnmatlion) prev
past parhijl) {sppend path (chr-get-path [(Llat source destinst
SITEE]
(Cdadar path) il 75 IE we have no chosen=path, we can't recurse = W retu
(defun pr e-b {east pathibil ' g ’
(edadar pachhl) A ALK 3
{ﬂﬂnd {fleat (edadar pathjdh ({nuil chosen-path] nail)

= o d‘atubase}l 1

wecnte-plan—helper | Fankds IRl ﬂmau EATh] b ither the two elements of the chosen-path match,

d {{or {mall source} |nu1 pr_m[aqua-lcul-rm:rsemmar na-i-r}-Ju-w{--::aar ﬂat&ha.se}.—ki of the chosen-path matches the destina

1 fail VEEL-SpEput-halpa &Th " Ly
'“'-"m:' :; f:::“{ i I.ﬁ'.Ef!ﬂF.dmL(LiLEt {append .E Ecaar datalﬁ%E‘H’F pa invalid recuraive call ¢ return nl
: .._,! {limt I.DII mn"”!k‘&rﬁﬂ-:ﬂ'& Pal_‘l_‘ {r_-adr Pal_‘l_‘} (cdar datiabased)d) chosen-path} (cads chosen-path))
execute-plan-balpar pource (rast i peithedle z Y :
({chock=failure (firss pash) *failure-pod Bﬁr datahESE‘} }] {(equal ([(cadr chosen-path) destination] nll)

o Gl e [ABUGIEIN st (car

[exerure-plan-helper ssures (rese pat rEsess—ond

iz lappend [list (append {[list (first pat®T)
) {list "PATLURE])} i =

) (execute-plan-helper souroe|deeis PASNe Sk -b (zous
(eond [(egl method :

[{eql method :

1 Sequenta
rag with nt chossn-path aa
ating the and prev-plan accor

e 1. —fiatdh o dbrr
c L £NHESRE

J=hee il £ 5l
: -
(defun process-two (paid ﬂaﬂh‘&% I W, ual (rever

(cond ((null database) ﬂ.'ta.ri source destinatliomil) (t (e (cbr-top (cadr phosppigethh et Hajiae &

{(lor (equal (Ea¥# pair) (caar database)) i‘:]'*"‘* path (chr=get=-path chosen-path

ﬁ-glual (reverse (cadr pair)) (caar database) }#:-an {ear chosen-path) destlination ne
g Ifu.ppenct path [cbr-get-path chosen-path

wWaAYE

{dsfen canveart-avtput-halpsr

feond ({nall path) mi1){@ pend {list {append (list (caar database))
{t Cappend [list foens (fSret path) (List C1iWE (Tiret ¥ plan]

athl =
remnu&-pau;hfnan pair) (ecdar datanasei&;} Jop source destinatlen (chbr-new-plan
IC'-""'-'“L'G-LHI-"-H.FTG'E BE Hé.rEEEEI.SE} }} [ebe-evaluates source destlnatlon

(chr-retrieve source destinatlon plan))

i
} (defvar :
'[H'lﬂﬂ:g ;ci'g’%rgﬂtt 1FﬁEth urrag'?tﬁ'?gh 1;il:r]'b:'n.huﬂ? Korth=-Avenua)) FERAYE)
(({10th Curran) (10tkDEGEeSSTEWT patx Hiﬂﬂ.ﬂaﬂauaqﬂﬂ Yr))
) {Curran 8th-1}}
{(10th McMillan) (10th Curram) (10th hemphill) ([(memillanm 8th-1)1]
J [(10k hemphkill) (10th mEcmillany (10th dalmnev) (héesphill HSHtklk=15)

