High Availability IRR

Yasuhiro Shirasaki Tomoya Yoshida

Anti Prefix Hijacking Project / NTT Communications

Why High Availability?

- Anti Prefix hijacking system in JP
 - Real time validation with JPIRR
 - Registration check with IR (JPNIC)
- To deploy "IRR based Anti prefix hijacking"
 - Redundancy (Availability)
 - Valid IRR entry (Integrity)
 - Performance
- Research Project on Anti Prefix Hijacking
 - Japanese Government (Ministry of Internal Affairs and Communications) research project
 - to develop detection/mitigation/prevention mechanism

IRR based Anti Prefix Hijacking

Current IRR systems

◆ RIPE whoisd RIPE, APNIC, AfriNIC

Merit IRRd RADB, JPIRR, VRR, other ISP's IRR

	RIPE Whoisd	Merit IRRd
Structure	Modularized	Monolithic
Data management	RDBMS (MySQL)	Text file
Object registry	Mail, Web (other tool)	Mail, Web (other tool)
Mirroring protocol	NRTM	NRTM
RPSL correspondense	RPSLng (RFC4012)	RPSLng (RFC4012)
Error check	Strict (Sequence check)	Loose
System Scalability	Yes (RDBMS)	No
Latest version	Active Dev on CVS	Irrd-2.3.4 2007/6/11

HA IRR Software Development

- We have picked up RIPE whois-server as the base software
- Now we're working on
 - Redundancy
 - Down-time minimization
 - High performance
 - Especially response time and scalability
 - Ability to handle "signed" data objects

RIPE whoisd

Redundancy (1)

- (0) Object registry by Operator
- (1) Send Object to ripupdate for Database constructing
- (2) Update "MySQL Database"
- (3) Constructing "Radix Tree"
- (4) Database sync
- (5) Whois query
- (6) Check address (IP Prefix check)
- (7) Database search

Registry Process

Lookup Process,

Redundancy (2) Type-A

Redundancy (3) Type-B

Redundancy (4)

Down time minimization

- ◆ Radix Tree (RX) rebuilding issue
 - Rebuilding RX in a boot sequence takes more than 5 minutes for RIPE-DB
 - Service interruption by blocking DB updates while rebuilding RX
 - NDBCLUSTER storage engine doesn't support Multi Version Concurrency Control (MVCC) mechanism
 - ◆No "snapshot"
 - Future planned
- Current Workaround
 - Make a copy of table in MEMORY storage from slow NDBCLUSTER storage to minimize service interruption

Test system configuration

Performance target

- Registry
 - **◆**RADB
 - ◆188717 objects
 - →~240 actions/day (0.13% of total object number)
 - ◆117 days (From 1st Mar to 25th Jun)
 - ◆27805 sequences change (455871 ---> 483676)
 - **◆**RIPE
 - 2461141 objects (including IR objects)
 - ~7000 actions/day (0.28% of total object number)
 - ◆133 days (From 6th Feb to 19th Jun)
 - ◆925890 sequences change (8701661 ---> 9627551)
 - 240 updates/minutes at peak
- **◆**Lookup
 - RADB queries
 - About less than 4M queries/day
 - # From http://www.radb.net/stats-history.html

Remaining Items

- Performance
 - Memory issue
 - 4Gbytes memory is not enough for NDB cluster
 - ---> Upgrade configuration (amd64/8GB \sim)
 - Scalability
 - Clustering with many servers
- Redundancy
 - Off-site redundancy
- Field trial
 - Redundancy test b/w Tokyo and Osaka

Thank you

Yasuhiro Shirasaki yasuhiro@nttv6.jp

Tomoya Yoshida yoshida@ocn.ad.jp