High Availability IRR

Yasuhiro Shirasaki
Tomoya Yoshida

Anti Prefix Hijacking Project / NTT Communications

Why High Availability?

@ Anti Prefix hijacking system in JP
@ Real time validation with JPIRR
@ Registration check with IR (JPNIC)

@ To deploy “IRR based Anti prefix hijacking”
Redundancy (Availability)
Valid IRR entry (Integrity)
Performance

@ Research Project on Anti Prefix Hijacking

Japanese Government (Ministry of Internal Affairs and
Communications) research project

to develop detection/mitigation/prevention mechanism

IRR based Anti Prefix Hijacking

¢ IRR is key Detection Mitigation
Compare b/w Routing After detect the hijacking,
com pote Nt for update and correct route on Start taking action
-IRR reqistry -Add “cure” route to IRR
— Detection -Configuratign file -Advertise I};’“‘
o Agent/ ﬂ\ T
— Mltlgathn Sensor j \f'\zggi
: 3 Ramr=C2
— Prevention Routing
Info Lookup\;., ‘Registrati

- Checking routes

- Filtering
Receive correct

- Longer Prefix advertise
routes only Prevention

BGP Update
|

Current IRR systems

9 RIPE whoisd RIPE, APNIC, AfriNIC
€ Merit IRRd RADB, JPIRR, VRR, other ISP’s IRR
Structure Modularized Monolithic
Data management |RDBMS (MySQL) Text file
Object reqgistry Mail, Web (other tool) | Mail, Web (other tool)
Mirroring protocol |NRTM NRTM
RPSL RPSLng (RFC4012) RPSLng (RFC4012)
correspondense
Error check Strict (Sequence Loose
check)
System Scalability |Yes (RDBMS) No
Latest version Active Dev on CVS Irrd-2.3.4 2007/6/11

HA IRR Software Development

e We have picked up RIPE whois-server as the
base software

e Now we’re working on
— Redundancy
— Down-time minimization

— High performance

e Especially response time and scalability

— Ability to handle “signed” data objects

RIPE whoisd

v
A

- Authentication
- Syntax check

Ready for registry (0) W v
T

Constructing DB

v

IP address to
Prefix conversion

(1)

i (3)

- Radix tree update F_’
-DB update (2)

Data management >

(7) @m \

object

(6)

(0) Object registration by Operator
(1) Authentication and Registry

(2) Update “MySQL Database” Process
(3) Constructing “Radix Tree”

(4) Whois query

(5) Check address (IP Prefix check, cache) Lookup
6) Database search

(6) Process,

(7) Whois reply

Redundancy (1)

machinel

(0)| object

<

machine?

(6)

(5) ¥
D e — ﬂ\i

. _{(@‘4\
No Object =

v
G- | |
% (4

Clustering (NDB Cluster)
(0) Object registry by Operator
(1) Send Object to ripupdate for Database constructing Registry
(2) Update “MySQL Database” Process
(3) Constructing “Radix Tree”
(4) Database sync
(5) Whois query | Lookup
(6) Check address (IP Prefix check) Process7

(7) Database search

Redundancy (2) Type-A

Operators ~* Branching at dbupdate
_________ T modified

' Updates via e-mail ;

dbupdate

ACT SBY

dbupdate

heartbeat

~ 500 lines modification

. NRTM

\YilaTe

Tree
v
E DB Cluster j

Data — Update (write)
— Lookup (read)
Management

Redundancy (3) Type-B

Operators e SYNCER Mod. reflects

piaes i il DB change to Radix Tree
ACT dbupdate SBY
heartbeat " heartbeat Ad d e d

p p \VilaTe MOd

~ 2500 lines modification

- Radix SYNCER
Tree Tree Mod.
'

E DB Cluster j

Data — Update (write)
— Lookup (read)
Management

Redundancy (4)

Machinel(master ACT)
(0)| object | .

< ‘ \(j/;

A
(D=

.. o ;.
D
— lobieet

(0) Objects registration (mail, web)
(1) Sanity check, determine actions
(2) Send objects to ripupdate
(3) INSERT, UPDATE, DELETE from database
(4) Fetch updated data from DB
(5) Check update periodically
Machine?2 (6) Send updates to NRTM client
(7) Update Radix Tree
(m aster SBY) (8) Updates Radix Tree and store data into local DB 0
(9) Reply for users’ queries

Down time minimization

@ Radix Tree (RX) rebuilding issue

Rebuilding RX in a boot sequence takes more than 5
minutes for RIPE-DB

Service interruption by blocking DB updates while
rebuilding RX

NDBCLUSTER storage engine doesn’t support Multi
Version Concurrency Control (MVCC) mechanism

@ No “snapshot”
@ Future planned

@ Current Workaround

Make a copy of table in MEMORY storage from slow
NDBCLUSTER storage to minimize service interruption

Test system configuration

-
[}'—B (LVS)

|
- \
I I Whois-server

for update

Whois-server
for reference

—BEENs | SQL Nodel

\NDB Cluster I I /

Performance target

@ Registry
RADB
€ 188717 objects
€ ~240 actions/day (0.13% of total object number)
€ 117 days (From 1st Mar to 25t Jun)
9 27805 sequences change (455871 ---> 483676)
RIPE
92461141 objects (including IR objects)

€ ~7000 actions/day (0.28% of total object number)
9 133 days (From 6th Feb to 19t Jun)
€ 925890 sequences change (8701661 ---> 9627551)

€ 240 updates/minutes at peak

@ Lookup
RADB queries

€ About less than 4M queries/day
From http://www.radb.net/stats-history.html

13

Remaining ltems

e Performance

— Memory issue
4Gbytes memory is not enough for NDB cluster
---> Upgrade configuration (amd64/8GB~)

— Scalability
e Clustering with many servers
e Redundancy
— Off-site redundancy

e Field trial
— Redundancy test b/w Tokyo and Osaka

Thank you

Yasuhiro Shirasaki

Tomoya Yoshida

	High Availability IRR
	Why High Availability?
	IRR based Anti Prefix Hijacking
	Current IRR systems
	HA IRR Software Development
	RIPE whoisd
	Redundancy (1)
	Redundancy (2) Type-A
	Redundancy (3) Type-B
	Redundancy (4)
	Down time minimization
	Test system configuration
	Performance target
	Remaining Items
	Thank you

