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Why High Availability?

@ Anti Prefix hijacking system in JP
@ Real time validation with JPIRR
@ Registration check with IR (JPNIC)

@ To deploy “IRR based Anti prefix hijacking”
Redundancy (Availability)
Valid IRR entry (Integrity)
Performance

@ Research Project on Anti Prefix Hijacking

Japanese Government (Ministry of Internal Affairs and
Communications) research project

to develop detection/mitigation/prevention mechanism



IRR based Anti Prefix Hijacking
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Current IRR systems

9 RIPE whoisd RIPE, APNIC, AfriNIC
€ Merit IRRd RADB, JPIRR, VRR, other ISP’s IRR
Structure Modularized Monolithic
Data management |RDBMS (MySQL) Text file
Object reqgistry Mail, Web (other tool) | Mail, Web (other tool)
Mirroring protocol |NRTM NRTM
RPSL RPSLng (RFC4012) RPSLng (RFC4012)
correspondense
Error check Strict (Sequence Loose
check)
System Scalability |Yes (RDBMS) No
Latest version Active Dev on CVS Irrd-2.3.4 2007/6/11




HA IRR Software Development

e We have picked up RIPE whois-server as the
base software

e Now we’re working on
— Redundancy
— Down-time minimization

— High performance

e Especially response time and scalability

— Ability to handle “signed” data objects
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Redundancy (1)
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Redundancy (2) Type-A
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Redundancy (3) Type-B
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Redundancy (4)
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Down time minimization

@ Radix Tree (RX) rebuilding issue

Rebuilding RX in a boot sequence takes more than 5
minutes for RIPE-DB

Service interruption by blocking DB updates while
rebuilding RX

NDBCLUSTER storage engine doesn’t support Multi
Version Concurrency Control (MVCC) mechanism

@ No “snapshot”
@ Future planned

@ Current Workaround

Make a copy of table in MEMORY storage from slow
NDBCLUSTER storage to minimize service interruption



Test system configuration
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Performance target

@ Registry
RADB
€ 188717 objects
€ ~240 actions/day (0.13% of total object number)
€ 117 days (From 1st Mar to 25t Jun)
9 27805 sequences change (455871 ---> 483676)
RIPE
92461141 objects (including IR objects)

€ ~7000 actions/day (0.28% of total object number)
9 133 days (From 6th Feb to 19t Jun)
€ 925890 sequences change (8701661 ---> 9627551)

€ 240 updates/minutes at peak

@ Lookup
RADB queries

€ About less than 4M queries/day
# From http://www.radb.net/stats-history.html

13



Remaining ltems

e Performance

— Memory issue
4Gbytes memory is not enough for NDB cluster
---> Upgrade configuration (amd64/8GB~ )

— Scalability
e Clustering with many servers
e Redundancy
— Off-site redundancy

e Field trial
— Redundancy test b/w Tokyo and Osaka
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